HW05 - Acids, Bases, and Salts

Question 1

1 pts

In the reversible reaction

$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$,
the two Bronsted-Lowry acids are...

There is only one Bronsted-Lowry acid shown: $\mathrm{H}_{3} \mathrm{O}^{+}$
HCN and $\mathrm{H}_{3} \mathrm{O}^{+}$
. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
HCN and CN^{-}
$\mathrm{H}_{2} \mathrm{O}$ and CN^{-}

Question 2

1 pts

A water solution of sodium acetate is basic because..
sodium acetate is only weakly ionized.
The statement is false. A water solution of sodium acetate is acidic.
the conjugate base of the acetate ion is a strong base.
the acetate ion acts as a Bronsted-Lowry base in a reaction with water.

Question 3
According to the Bronsted-Lowry concept of acids and bases, which of the following
statements about a base is NOT true?
If a base is strong, then its conjugate acid will be relatively weaker.
A base will share one of its electron pairs to bind H^{+}.
A base reacts with an acid to form a salt.
A base must contain a hydroxide group.

Question 4
Which of the following is true in pure water at any temperature?
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
K_{w} decreases with increasing temperature.
$\mathrm{pH}=7.0$

Question 5

1 pts

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$when $\left[\mathrm{OH}^{-}\right]=3.3 \times 10^{-9} \mathrm{M}$?
$3.0 \times 10^{-6} \mathrm{M}$
$3.3 \times 10^{-9} \mathrm{M}$
$3.3 \times 10^{-5} \mathrm{M}$
. $1.0 \times 10^{-7} \mathrm{M}$

Question 6

A strong acid (or base) is one which...
should only be used when wearing goggles and gloves.
reacts with a salt to form water.
dissolves metals.
dissociates completely in aqueous solution

Question 7

Which of the following substances is a strong acid?

```
\(\mathrm{H}_{2} \mathrm{SO}_{4}\)
```

- $\mathrm{H}_{3} \mathrm{PO}_{4}$

HF
HSO_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$

Question 8

HCN is classified as a weak acid in water. This means that it produces...
no hydronium ions.
a relatively large fraction of the maximum number of possible hydronium ions.
a relatively small fraction of the maximum number of possible hydronium ions.
100% of the maximum number of possible hydronium ions.

Question 9
Which of the following substances is a weak acid?
HNO_{3}
HI
HClO_{4}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{HCl}^{\mathrm{HClO}}$
HBr_{3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$

Question 10
Which is NOT a conjugate acid-base pair, respectively?
$\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$
$\mathrm{SO}_{4}{ }^{2-}: \mathrm{HSO}_{4}^{-}$
HCN^{-}: CN^{-}
$\mathrm{H}_{3} \mathrm{O}^{+}: \mathrm{H}_{2} \mathrm{O}$
Question 11

The conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
$-\mathrm{HSO}_{4}{ }^{-}$
HSO_{4}
$\mathrm{SO}_{4}{ }^{2-}$
($\mathrm{H}_{3} \mathrm{SO}_{4}{ }^{+}$

Question 12

1 pts

What is the conjugate acid of $\mathrm{NO}_{3}{ }^{-}$?
$\mathrm{NO}_{3}{ }^{2-}$
NH_{3}
HNO_{3}
NO_{2}

Assume that five weak acids, identified only by numbers (1, 2, 3, 4, and 5) have the following ionization constants:

1 - 1.0×10^{-3}
$2-\quad 3.0 \times 10^{-5}$
$3-2.6 \times 10^{-7}$
4 - $\quad 4.0 \times 10^{-9}$
$5-\quad 7.3 \times 10^{-11}$
The anion of which acid is the strongest base?

3
4

2

5
1

Question 14

The term " K_{a} for the ammonium ion" describes the equilibrium constant for which of the following reactions?

```
\mp@subsup{NH}{4}{+}+\mp@subsup{OH}{}{-}\rightleftharpoons\mp@subsup{\textrm{NH}}{3}{}+\mp@subsup{\textrm{H}}{2}{}\textrm{O}
```

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{NH}_{4} \mathrm{Cl}($ solid $)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$

Question 15

1 pts

If the value of K_{b} for pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ is 1.8×10^{-9}, calculate the equilibrium constant for the following reaction:
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
-1.8×10^{-9}
1.8×10^{-16}
5.6×10^{-6}
5.6×10^{8}

Question 16
What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?
$1.0 \times 10^{-7} \mathrm{M}$
6.6×10^{-5}
$2.0 \times 10^{-12} \mathrm{M}$
1.0 M

Question 17
Which pH represents a solution with 1000 times higher $\left[\mathrm{OH}^{-}\right]$than a solution with a pH of
5?
phts $=4$
$\mathrm{pH}=6$
$\mathrm{pH}=8$
$\mathrm{pH}=7$

Question 18
What is the pH of a $0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ aqueous solution?
1.33
13.3
9.98
8.7

Question 19
Hydroxylamine is a weak molecular base with $\mathrm{K}_{\mathrm{b}}=6.6 \times 10^{-9}$. What is the pH of a 0.0500
M solution of hydroxylamine?
8.93
10.4
9.48
9.26

Question 20

1 pts

What is the pH of a 0.23 M solution of potassium generate (KR -COO) ? K_{a} for the generic acid $\mathrm{R}-\mathrm{COOH}$ is 2.7×10^{-8}.
(10.23

- 10.47
10.83
. 10.60

Question 21

1 pts

Which solution has the highest pH ?
$0.1 \mathrm{M} \mathrm{KClO}, \mathrm{K}_{\mathrm{a}}$ for HClO is 3.5×10^{-8}
$0.1 \mathrm{M} \mathrm{KCH}_{3} \mathrm{COO}, \mathrm{K}_{\mathrm{a}}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}
0.1 M of $\mathrm{KNO}_{2}, \mathrm{~K}_{\mathrm{a}}$ for HNO_{2} is 4.5×10^{-4}
0.1 M of $\mathrm{KCl}, \mathrm{K}_{\mathrm{a}}$ for HCl is VERY LARGE!!

Question 22

1 pts

What is the pH of a solution that contains 11.7 g of NaCl for every 200 mL of solution?
1.0×10^{-7}
9.0
10^{-1}
7.0

Question 23

1 pts

What is the pH of a solution made by mixing 0.050 mol of NaCN with enough water to make a liter of solution? K_{a} for HCN is 4.9×10^{-10}.

- 12
- 11
10^{-3}
3

Question 24	1 pts
Identify the list in which all salts produce a basic aqueous solution.	
$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{3} \mathrm{NO}_{3}, \mathrm{Fel}_{3}$	
AlCl ${ }_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{KClO}_{4}$	
$\bigcirc \mathrm{KCH}_{3} \mathrm{COO}, \mathrm{NaCN}, \mathrm{KF}$	
($\mathrm{AgNO}_{3}, \mathrm{NaCHO}_{2}, \mathrm{CrI}_{3}$	
Question 25	1 pts
What is the pH in a solution made by dissolving 0.100 moles of sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$ in enough water to make one liter of solution? K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.80 x 10^{-5}.	
- 10.25	
9.25	
8.87	
5.74	

Question 28
 1 pts

A 0.28 M solution of a weak acid is 3.5% ionized. What is the pH of the solution?
1.46
2.01
3.17
0.55

1 pts

A 0.200 M solution of a weak monoprotic acid HA is found to have a pH of 3.00 at room temperature. What is the ionization constant of this acid?
5.0×10^{-6}
1.0×10^{-3}
2.0×10^{-9}
5.3

Question 27

1 pts

What is the percent ionization for a weak acid HX that is 0.40 M ? $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-7}$
0.0010%
0.10%
0.0020\%
0.20\%
Question 29

The pH of 0.010 M aqueous aniline is 8.32 . What is the percentage protonated?
0.021%
2.1\%

It is impossible to tell without knowing the K_{a} or the K_{b} for aniline.
0.0021\%

